On b*ĝ - homeomorphism in Topological Spaces

K.Bala Deepa Arasi¹, Assistant Professor of Mathematics, A.P.C. Mahalaxmi College for Women, Thoothukudi, TN, India.

M.Mari Vidhya², M.Phil Scholar, St. Mary's College (Autonomous), Thoothukudi, TN, India.

Abstract: In this paper, we define a new class of function namely $b^*\hat{g}$ -homeomorphisms and we prove some of their basic properties. Also, we prove some of their relationship among other homeomorphisms. Throughout this paper $f:(X,\tau) \to (Y,\sigma)$ is a function from a topological space (X,τ) to a topological space (Y,σ) .

Keywords: $b^{*}\hat{g}$ -closed sets, $b^{*}\hat{g}$ -continuous functions, $b^{*}\hat{g}$ -open maps, $b^{*}\hat{g}$ -closed maps and $b^{*}\hat{g}$ -homeomorphisms.

AMS Mathematics Subject Classification (2010): 54A05.

1. Introduction:

In 1996, D. Andrijevic [1] introduced b-open sets in topology and studied its properties. In 1970, N.Levine [9] introduced generalized closed sets and studied their basic properties. In 2003, M.K.R.S.Veerakumar [15] defined ĝclosed sets in topological spaces and studied their properties. b*-closed sets have been introduced and investigated by Muthuvel [11] in 2012. In 2016, K.Bala Deepa Arasi and G.Subasini [2] introduced b*ĝ-closed sets and studied its properties. K.Balachandran et al introduced the concept of generalized continuous maps in Topological spaces. In 2017, we [3] introduced b*ĝ-continuous functions and b*ĝ-open maps in topological spaces and also studied their properties.

Now, we define a new version of map called $b^{\hat{g}}$ -homeomorphism. Also, we prove some of its properties and establish the relationships between $b^{\hat{g}}$ -homeomorphisms and other known existing homeomorphisms.

2. Preliminaries:

Throughout this paper (X, τ) (or simply X) represents topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of (X, τ) , Cl(A), Int(A) and A^c denote the closure of A, interior of A and the complement of A respectively. We are giving some basic definitions.

Definition: 2.1 A subset A of a topological space (X, τ) is called

- 1. a semi-open set[10] if $A \subseteq Cl(Int(A))$.
- 2. an α -open set[4] if A⊆Int(Cl(Int(A))).
- 3. a b-open set [1] if $A \subseteq Cl(Int(A)) \cup Int(Cl(A))$.
- 4. a regular open set[12] if A=Int(Cl(A)).

The complement of a semi-open (resp. α -open, regular open) set is called semi-closed (resp. α -closed, regular closed) set. The intersection of all semi-closed (resp. α -closed, regular closed) sets of X containing A is called the semi-closure (resp. α -closure, regular closure) of A and is denoted by sCl(A) (resp. α Cl(A), rCl(A)). The family of all b* \hat{g} -open (resp. α -open, semi-open, b-open, regular open) subsets of a space X is denoted by b* $\hat{g}O(X)$ (resp. $\alpha O(X)$, sO(X), bO(X), rO(X)).

Definition: 2.2 A function $f:(X, \tau) \to (Y, \sigma)$ is called a

- 1. continuous[15] if $f^{-1}(V)$ is closed in X for every closed set V in Y.
- 2. semi-continuous[7] if $f^{-1}(V)$ is semi-closed in X for every closed set V in Y.
- 3. α -continuous[4] if $f^{-1}(V)$ is α -closed in X for every closed set V in Y.
- 4. regular continuous [12] if $f^{-1}(V)$ is regular closed in X for every closed set V in Y.
- 5. gs-continuous[5] if $f^{-1}(V)$ is gs-closed in X for every closed set V in Y.
- 6. gb-continuous[16] if $f^{-1}(V)$ is gb-closed in X for every closed set V in Y.
- 7. bĝ-continuous[14] if $f^{-1}(V)$ is bĝ-closed in X for every closed set V in Y.
- 8. $g^{s-continuous}[13]$ if $f^{-1}(V)$ is $g^{s-closed}$ in X for every closed set V in Y.
- 9. gr*-continuous[8] if $f^{-1}(V)$ is gr*-closed in X for every closed set V in Y.
- 10. (gs)*-continuous[6] if $f^{-1}(V)$ is (gs)*-closed in X for every closed set V in Y.
- 11. b* \hat{g} continuous[3] if $f^{-1}(V)$ is b* \hat{g} -closed in X for every closed set V in Y.

Definition: 2.3 A function $f:(X,\tau) \to (Y,\sigma)$ is called a

- 1. open map[15] if f(V) is open in Y for every open set V in X.
- 2. semi-open map[7] if f(V) is semi-open in Y for every open set V in X.
- 3. α -open map[4] if f(V) is α -open in Y for every open set V in X.
- 4. regular open map[12] if f(V) is regular open in Y for every open set V in X.
- 5. gs-open map[5] if f(V) is gs-open in Y for every open set V in X.
- 6. gb-open map[16] if f(V) is gb-open in Y for every open set V in X.
- 7. bĝ-open map[14] if f(V) is bĝ-open in Y for every open set V in X.
- 8. g^* s-open map[13] if f(V) is g^* s-open in Y for every open set V in X.
- 9. gr^* -open map[8] if f(V) is gr^* -open in Y for every open set V in X.
- 10. $(gs)^*$ -open map[6] if f(V) is $(gs)^*$ -open in Y for every open set V in X.
- 11. $b^{\hat{g}}$ -open map[3] if f(V) is $b^{\hat{g}}$ -open in Y for every open set V in X.

Remark:2.4 The family of all b* \hat{g} -closed (resp. α -closed, semi-closed, b-closed, regular closed) subsets of a space *X* is denoted by b* $\hat{g}C(X)$ (resp. $\alpha C(X)$, sC(*X*), bC(*X*), rC(*X*)).

3. b*ĝ-Homeomorphism:

We introduce the following definition.

Definition 3.1: A bijection $f:(X,\tau) \to (Y,\sigma)$ is called a **b*** \hat{g} -homeomorphism if f is both b* \hat{g} -continuous map and b* \hat{g} -open map.

That is, both f and f^{-1} are b* \hat{g} -continuous map.

Example 3.2: Let $X = Y = \{a,b,c\}$ with topologies $\tau = \{X, \phi, \{a\}, \{a,b\}\}$ and $\sigma = \{Y,\phi, \{a\}, \{b\}, \{a,b\}\}$. Define a function $f:(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = b, f(b) = a, f(c) = c. $b*\hat{g}C(X)=\{X,\phi, \{b\}, \{c\}, \{a,c\}, \{b,c\}\}$ and $C(Y)=\{Y,\phi, \{c\}, \{a,c\}, \{b,c\}\}$ and $b*\hat{g}O(Y)=\{Y,\phi, \{a\}, \{b\}, \{a,b\}, \{b,c\}, \{a,c\}\}$. Here the inverse image of C(Y) $\{c\}, \{b,c\}$ and $\{a,c\}$ are $\{c\}, \{a,c\}$ and $\{b,c\}$ which are $b*\hat{g}C(X)$ and the image of O(X) $\{a\}$ and $\{a,b\}$ are $\{b\}$ and $\{a,b\}$ which are $b*\hat{g}O(Y)$. Hence f is $b*\hat{g}$ -homeomorphism.

Proposition 3.3:

- a) Every homeomorphism is b*ĝ-homeomorphism
- b) Every α -homeomorphism is b* \hat{g} -homeomorphism
- c) Every semi-homeomorphism is b*ĝ-homeomorphism
- d) Every regular homeomorphism is b*ĝ-homeomorphism
- e) Every gr*-homeomorphism is b*ĝ-homeomorphism
- f) Every (gs)*-homeomorphism is b*ĝ-homeomorphism
- g) Every g*s-homeomorphism is b*ĝ-homeomorphism

Proof:

- a) Let f:(X,τ) → (Y,σ) be a homeomorphism. Then f is continuous and open map. By proposition 3.5 and 4.4 in
 [3], f is b*ĝ-continuous and b*ĝ-open map. Hence f is b*ĝ-homeomorphism.
- b) Let $f:(X,\tau) \to (Y,\sigma)$ be a α -homeomorphism. Then f is α -continuous and α -open map. By proposition 3.5 and 4.4 in [3], f is b* \hat{g} -continuous and b* \hat{g} -open map. Hence f is b* \hat{g} -homeomorphism.
- c) Let $f:(X,\tau) \to (Y,\sigma)$ be a semi-homeomorphism. Then f is semi-continuous and semi-open map. By proposition 3.5 and 4.4 in [3], f is b* \hat{g} -continuous and b* \hat{g} -open map. Hence f is b* \hat{g} -homeomorphism.
- d) Let f:(X,τ) → (Y,σ) be a regular homeomorphism. Then f is regular continuous and regular open map. By proposition 3.5 and 4.4 in [3], f is b*ĝ-continuous and b*ĝ-open map. Hence f is b*ĝ-homeomorphism.
- e) Let f:(X,τ) → (Y,σ) be a gr*-homeomorphism. Then f is gr*-continuous and gr*-open map. By proposition 3.5 and 4.4 in [3], f is b*ĝ-continuous and b*ĝ-open map. Hence f is b*ĝ-homeomorphism.
- f) Let $f:(X,\tau) \to (Y,\sigma)$ be a (gs)*-homeomorphism. Then f is (gs)*-continuous and (gs)*-open map. By proposition 3.5 and 4.4 in [3], f is b* \hat{g} -continuous and b* \hat{g} -open map. Hence f is b* \hat{g} -homeomorphism.
- g) Let $f:(X,\tau) \to (Y,\sigma)$ be a g*s-homeomorphism. Then f is g*s-continuous and g*s-open map. By proposition 3.5 and 4.4 in [3], f is b* \hat{g} -continuous and b* \hat{g} -open map. Hence f is b* \hat{g} -homeomorphism.

The following examples show that the converse of the above proposition need not be true.

Example 3.4:

- a) Let $X = Y = \{a,b,c\}$ with topologies $\tau = \{X, \phi, \{a,c\}\}$ and $\sigma = \{Y,\phi, \{b\}, \{c\}, \{b,c\}\}$. Define $f:(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = b, f(b) = c, f(c) = a. $b*\hat{g}C(X) = \{X,\phi, \{b\}, \{a,b\}, \{b,c\}\}$; $b*\hat{g}O(Y) = \{Y,\phi, \{b\}, \{c\}, \{a,b\}, \{b,c\}, \{a,c\}\}$; $C(Y) = \{Y,\phi, \{a\}, \{a,c\}\}$ and $C(X) = \{X,\phi, \{b\}\}$. Here, the inverse image of C(Y) $\{a\}, \{a,b\}$ and $\{a,c\}$ are $\{b\}, \{b,c\}$ and $\{a,b\}$ which are $b*\hat{g}C(X)$ but not C(X). Hence f is $b*\hat{g}$ -homeomorphism but not a homeomorphism, since f is not a continuous map.
- b) Let $X = Y = \{a,b,c\}$ with topologies $\tau = \{X, \phi, \{a\}, \{c\}, \{a,c\}, \{b,c\}\}$ and $\sigma = \{Y,\phi, \{b\}, \{c\}, \{b,c\}\}$. Define $f:(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = b, f(b) = a, f(c) = c. $b*\hat{g}C(X) = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{b,c\}\}; b*\hat{g}O(Y)$ $= \{Y,\phi, \{b\}, \{c\}, \{a,b\}, \{b,c\}, \{a,c\}\}; C(Y) = \{Y,\phi, \{a\}, \{a,b\}, \{a,c\}\}; \alpha O(Y) = \{Y,\phi, \{b\}, \{c\}, \{b,c\}\}$ and $\alpha C(X) = \{X,\phi, \{a\}, \{a,b\}, \{b,c\}\}$. Here, the image of O(X) $\{a\}, \{c\}, \{a,c\}$ and $\{b,c\}$ are $\{b\}, \{c\}, \{b,c\}$ and $\{a,c\}$ which are $b*\hat{g}O(Y)$ but not $\alpha O(Y)$. Hence f is $b*\hat{g}$ -homeomorphism but not a α -homeomorphism, since f is not a α -open map.
- c) Let $X = Y = \{a,b,c\}$ with topologies $\tau = \{X, \phi, \{c\}, \{a,b\}\}$ and $\sigma = \{Y,\phi, \{a\}\}$. Define $f:(X,\tau) \rightarrow (Y,\sigma)$ by $f(a) = c, f(b) = a, f(c) = b, b*\hat{g}C(X) = \{X,\phi, \{c\}, \{a,b\}\}; b*\hat{g}O(Y) = \{Y,\phi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}\}; C(Y) = \{Y,\phi, \{b,c\}\}; sO(Y) = \{Y,\phi, \{a\}, \{a,b\}, \{a,c\}\}$ and $sC(X) = \{X,\phi, \{c\}, \{a,b\}\}$. Here, the image of O(X) {c} and $\{a,b\}$ are {b} and $\{a,c\}$ which are $b*\hat{g}O(Y)$ but not sO(Y). Hence f is $b*\hat{g}$ -homeomorphism but not a semi-homeomorphism, since f is not a semi-open map.
- d) Let $X = Y = \{a,b,c\}$ with topologies $\tau = \{X, \phi, \{a\}, \{a,b\}\}$ and $\sigma = \{Y,\phi, \{b\}\}$. Define $f:(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b, f(b) = a, f(c) = c. $b*\hat{g}C(X) = \{X,\phi, \{b\}, \{c\}, \{a,c\}\}; b*\hat{g}O(Y) = \{Y,\phi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{b,c\}\}; C(Y) = \{Y,\phi, \{a,c\}\}; rO(Y) = \{Y,\phi\}$ and $rC(X) = \{X,\phi\}$. Here, the image of O(X) $\{a\}$ and $\{a,b\}$ are $\{b\}$ and $\{a,b\}$ which are $b*\hat{g}O(Y)$ but not rO(Y). Hence f is $b*\hat{g}$ -homeomorphism but not a regular homeomorphism, since f is not a regular open map.
- e) Let $X=Y=\{a,b,c\}$ with topologies $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}\}$ and $\sigma = \{Y, \phi, \{a\}\}$. Define $f:(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b, f(b) = a, f(c) = c. $b*\hat{g}C(X) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a,c\}, \{b,c\}\};$ $b*\hat{g}O(Y) = \{Y, \phi, \{a\}, \{b\}, \{c\}, \{a,c\}, \{a,c\}, \{b,c\}\};$ $C(Y) = \{Y, \phi, \{b,c\}\};$ $gr*O(Y) = \{Y, \phi, \{a\}\}$ and $gr*C(X) = \{X, \phi, \{c\}, \{a,c\}, \{b,c\}\}.$ Here, the image of O(X) $\{a\}, \{b\}$ and $\{a,b\}$ are $\{b\}, \{a\}$ and $\{a,b\}$ which are $b*\hat{g}O(Y)$ but not gr*O(Y). Hence f is $b*\hat{g}$ -homeomorphism but not gr*-homeomorphism, since f is not gr*-open map.
- f) Let $X=Y=\{a,b,c\}$ with topologies $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}\}$ and $\sigma = \{Y, \phi, \{a\}\}$. Define $f:(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = a, f(b) = c, f(c) = b. $b^{\circ}\hat{g}C(X) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a,c\}, \{b,c\}\}; b^{\circ}\hat{g}O(Y) = \{Y, \phi, \{a\}, \{b\}, \{c\}, \{a,c\}, \{a,c\}, \{a,c\}, \{c\}, \{a,c\}, \{c\}, \{a,c\}, \{b,c\}\}; C(Y) = \{Y, \phi, \{b,c\}\}; (gs)^{\circ}O(Y) = \{Y, \phi, \{a\}\}$ and $(gs)^{\circ}C(X) = \{X, \phi, \{c\}, \{a,c\}, \{b,c\}\}$. Here, the image of O(X) $\{a\}, \{b\}$ and $\{a,b\}$ are $\{a\}, \{c\}$ and $\{a,c\}$ which are $b^{\circ}\hat{g}O(Y)$ but not $(gs)^{\circ}O(Y)$. Hence f is $b^{\circ}\hat{g}$ -homeomorphism but not $(gs)^{\circ}$ -homeomorphism, since f is not $(gs)^{\circ}$ -open map.
- g) Let $X=Y=\{a,b,c\}$ with topologies $\tau =\{X, \phi, \{a\}, \{a,b\}\}$ and $\sigma =\{Y,\phi, \{b\}\}$. Define $f:(X,\tau) \to (Y,\sigma)$ by f(a) = c, f(b) = b, f(c) = a. $b*\hat{g}C(X) = \{X,\phi, \{b\}, \{c\}, \{a,c\}, \{b,c\}\}; b*\hat{g}O(Y) = \{Y,\phi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{b,c\}\}; C(Y) = \{Y,\phi, \{a,c\}\}; g*sO(Y) = \{Y,\phi, \{b\}, \{a,b\}, \{b,c\}\}$ and $g*sC(X) = \{X,\phi, \{b\}, \{c\}, \{b,c\}\}$. Here, the inverse image of C(Y) $\{a,c\}$ is $\{a,c\}$ which is $b*\hat{g}C(X)$ but not g*sC(X). Hence f is $b*\hat{g}$ -homeomorphism but not g*s-homeomorphism, since f is not g*s-continuous map.

Proposition 3.5:

- a) Every b*ĝ-homeomorphism is gs-homeomorphism
- b) Every b*ĝ-homeomorphism is gb-homeomorphism
- c) Every b*ĝ-homeomorphism is bĝ-homeomorphism

Proof:

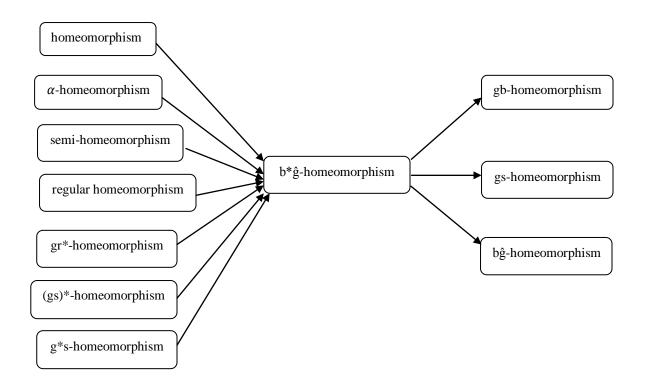
- a) Let $f:(X,\tau) \to (Y,\sigma)$ be a b* \hat{g} -homeomorphism. Then f is b* \hat{g} -continuous and b* \hat{g} -open map. By proposition 3.7 and 4.6 in [3], f is gs-continuous and gs-open map. Hence f is gs-homeomorphism.
- b) Let $f:(X,\tau) \to (Y,\sigma)$ be a b* \hat{g} -homeomorphism. Then f is b* \hat{g} -continuous and b* \hat{g} -open map. By proposition 3.7 and 4.6 in [3], f is gb-continuous and gb-open map. Hence f is gb-homeomorphism.
- c) Let $f:(X,\tau) \to (Y,\sigma)$ be a b* \hat{g} -homeomorphism. Then f is b* \hat{g} -continuous and b* \hat{g} -open map. By proposition 3.7 and 4.6 in [3], f is b \hat{g} -continuous and b \hat{g} -open map. Hence f is b \hat{g} -homeomorphism.

The following examples show that the converse of the above proposition need not be true.

Example 3.6:

- a) Let $X = Y = \{a,b,c\}$ with topologies $\tau = \{X, \phi, \{a\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b,c\}\}$. Define $f:(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = c, f(b) = b, f(c) = a. $b*\hat{g}C(X) = \{X, \phi, \{b\}, \{c\}, \{a,b\}, \{b,c\}, \{a,c\}\}; b*\hat{g}O(Y) = \{Y, \phi, \{a\}, \{b,c\}\}; C(Y) = \{Y, \phi, \{a\}, \{b,c\}\}; gsO(Y) = \{Y, \phi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{b,c\}, \{a,c\}\}$ and $gsC(X) = \{X, \phi, \{b\}, \{c\}, \{a,b\}, \{b,c\}, \{a,c\}\}$. Here, the image of O(X) $\{a\}$ is $\{c\}$ which is gsO(Y) but not $b*\hat{g}O(Y)$. Hence f is gs-homeomorphism but not a $b*\hat{g}$ -homeomorphism, since f is not a $b*\hat{g}$ -open map.
- b) Let $X = Y = \{a,b,c\}$ with topologies $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}\}$ and $\sigma = \{Y,\phi, \{c\}, \{a,b\}\}$. Define $f:(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = c, f(b) = a, f(c) = b. $b*\hat{g}C(X) = \{X,\phi, \{b\}, \{c\}, \{b,c\}, \{a,c\}\}; b*\hat{g}O(Y) = \{Y,\phi, \{c\}, \{a,b\}\}; C(Y) = \{Y,\phi, \{c\}, \{a,b\}\}; gbO(Y) = \{Y,\phi, \{a\}, \{b\}, \{c\}, \{a,c\}\}, \{b,c\}, \{a,c\}\}$ and $gbC(X) = \{X,\phi, \{b\}, \{c\}, \{b,c\}, \{a,c\}\}$. Here, the image of O(X) $\{a\}, \{b\}, \{a,b\}$ and $\{a,c\}$ are $\{c\}, \{a\}, \{a,c\}$ and $\{b,c\}$ which are gbO(Y) but not $b*\hat{g}O(Y)$. Hence f is gb-homeomorphism but not a $b*\hat{g}$ -homeomorphism, since f is not a $b*\hat{g}$ -open map.
- c) Let $X = Y = \{a,b,c\}$ with topologies $\tau = \{X, \phi, \{a\}, \{a,c\}\}$ and $\sigma = \{Y,\phi, \{a,b\}\}$. Define $f:(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = a, f(b) = c, f(c) = b. $b*\hat{g}C(X) = \{X,\phi, \{b\}, \{c\}, \{b,c\}\}; b*\hat{g}O(Y) = \{Y,\phi, \{a\}, \{b\}, \{a,b\}\}; C(Y) = \{Y,\phi, \{c\}\}; b\hat{g}O(Y) = \{Y,\phi, \{a\}, \{b\}, \{a,b\}, \{b,c\}, \{a,c\}\}$ and $b\hat{g}C(X) = \{X,\phi, \{b\}, \{c\}, \{b,c\}\}$. Here, the image of O(X) $\{a\}, \{a,b\}$ and $\{a,c\}$ are $\{a\}, \{a,c\}$ and $\{a,b\}$ which are $b\hat{g}O(Y)$ but not $b*\hat{g}O(Y)$. Hence f is $b\hat{g}$ -homeomorphism but not a $b*\hat{g}$ -homeomorphism, since f is not a $b*\hat{g}$ -open map.

Remark 3.7: The following diagram shows the relationships of b* \hat{g} -homeomorphism with other known existing homeomorphisms. A \rightarrow B represents A implies B but not conversely.



Proposition 3.8: For any bijection $f:(X,\tau) \to (Y,\sigma)$ the following statements are equivalent

- a) Its inverse map $f^{-1}: Y \to X$ is b* \hat{g} -continuous
- b) f is b* \hat{g} -open map
- c) f is b* \hat{g} -closed map

Proof: (a) \Rightarrow (b): Let G be any open set in X. Since f^{-1} is b* \hat{g} -continuous, the inverse image of G under f^{-1} , namely (G) is b* \hat{g} -open in Y and so, f is b* \hat{g} -open map.

(b) \Rightarrow (c): Let *F* be any closed set in *X*. Then F^c is open in *X*. Since *f* is b* \hat{g} -open, $f(F^c)$ is b* \hat{g} -open in *Y*. But $f(F^c) = Y - (F)$ and so, f(F) is b* \hat{g} -closed in *Y*. Therefore *f* is b* \hat{g} -closed map.

(c)⇒(a): Let *F* be any closed set in *X*. Then the inverse image of *F* under f^{-1} , namely f(F) is b* \hat{g} -closed in *Y*, since *f* is b* \hat{g} -closed map. Therefore f^{-1} is b* \hat{g} -continuous.

Proposition 3.9: Let $f:(X,\tau) \to (Y,\sigma)$ be a bijective and b* \hat{g} -continuous map. Then the following statements are equivalent

- a) f is b* \hat{g} -open map
- b) f is b* \hat{g} -homeomorphism
- c) f is b* \hat{g} -closed map

Proof: (a) \Rightarrow (b): Given $f:(X,\tau) \rightarrow (Y,\sigma)$ is a bijective, b* \hat{g} -continuous and b* \hat{g} -open. Then by definition 3.1, f is b* \hat{g} -homeomorphism.

(b) \Rightarrow (c): Given *f* is b* \hat{g} -open and bijective. By proposition 3.8, *f* is b* \hat{g} -closed map.

(c)⇒(a): Given f is b* \hat{g} -closed and bijective. By proposition 3.8, f is b* \hat{g} -open map.

4. References:

- 1) D. Andrijevic, On b-open sets, Mat. Vesnik., 48(1996), no. 1-2, 59-64.
- 2) K.Bala Deepa Arasi and G.Subasini, On b*ĝ-closed sets in topological spaces, *International Research Journal of Mathematics, Engineering and IT*, Vol.2, Issue 12, December 2015.
- 3) K.Bala Deepa Arasi and M.Mari Vidhya, On b*ĝ-continuous functions and b*ĝ-open maps in topological spaces, *International Journal of Mathematical Archieve* 8(7), 2017, 121-128.
- 4) M.Caldas and E.Ekici, On Slightly γ continuous functions Bol. Soc, Parana Mat (3)22(2004) No.2,63-74.
- 5) R.Devi, H.Maki and K.Balachandran, On Semi-generalized homeomorphisms and generalized semihomeomorphism in topological spaces, *Indian J. Pure. Appl. Math.*, 26(3) (1995), 271-284.
- L.Elvina Mary and R.Myvizhi, On (gs)*-closed sets in topological spaces, *International Journal of Mathematics Trends and Technology*, Vol 7-No. 2, March 2014.
- J.Ferrer, V.Gregori and I.L.Reilly, Some properties of semi-continuous functions and Quasi-uniform spaces, *Mem.Fac.Sci.Kochi Univ.Ser.A. Math*, 15(1994), 57-63.
- K.Indirani, P.Sathishmohan and V.Rajendran, On gr*-continuous functions in topological spaces, *IJSETR*, *Vol* 3, Issue 4, April 2014.
- 9) N.Levine, Generalized closed sets in topology Rend. Circ. Mat. Palermo, 19 (1970) 89-96.
- 10) N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- Muthuvel and Parimelazhagan, On b*-closed sets in topological spaces, *Int. Journal of Math. Analysis*, Vol.6, 2012. No.47, 2317-2323.
- 12) A.Narmadha and Nagaveni, On regular b-closed sets in topological spaces, *Heber International Conference on Application of Mathematics and Statistics*, HICAMS-2012, 5-7, Jan 2012, 81-87.
- 13) A.Pushpalatha and K.Anitha, On g*s-closed sets in topological spaces, *International J. Contemp. Math. Sciences*, Vol 6, 2011, No. 19, 917-929.
- R.Subasree and M.Maria Singam, On bĝ-Continuous maps and bĝ-Open maps in topological spaces, *IJERT*, Vol 2(10), October 2013.
- M.K.R.S.Veerakumar, On ĝ-closed sets in topological spaces, *Bull. Allahabad. Math. Soc.*, Vol.18, (2003), 99-112.
- 16) D.Vidhya and R.Parimelazhagan, On g*b-homeomorphism and contra g*b-continuous maps in topological spaces, *International Journal of Computer Applications*, Vol 58-No.14, November 2012.